Required Skills

mlops

Work Authorization

  • Citizen

Preferred Employment

  • Full Time

Employment Type

  • Direct Hire

education qualification

  • UG :- - Not Required

  • PG :- - Not Required

Other Information

  • No of position :- ( 1 )

  • Post :- 7th Jul 2022

JOB DETAIL

Requirements:

Required Skills:

  • 2 years of minimum working experience as a DevOps engineer.
  • 1 year of minimum experience working closely with an ML team.
  • Experience in creating, deploying, and maintaining centralized KubeFlow infrastructure on top of one or multiple Kubernetes clusters
  • Proficiency in creating CI/CD pipelines for microservice-based architectures using Jenkins
  • Proficiency in python. The candidate should be able to write production-grade code in python.
  • Proficiency in Git, docker and docker-compose
  • Experience with Kubernetes. The candidate should be comfortable with kubectl and helm.
  • Experience working with tools in the AWS ecosystem - particularly with Infrastructure as Code (IaC), CloudFormation, IAM, API Gateway, Lambda, Load Balancers, dynamodb, RDS, ECR, ECS and EKS.

Desired Skills:

  • AWS certified developer/solution architect
  • Experience in workflow orchestration tools like Apache Airflow, Prefect, MetaFlow, Luigi etc.
  • Prior experience/familiarity with machine learning frameworks e.g., PyTorch, TensorFlow, ONNX etc.
  • Experience/Familiarity with a model serving in ML and working with frameworks like TensorFlow Serving, TorchServe, KFServing, Seldon, BentoML etc.
  • Experience working with computer vision technologies is a bonus

Responsibilities:

  • Work closely with the ML team to plan, build, maintain, and improve an end-to-end MLOps platform on top of KubeFlow for research, model training, logging and model serving
  • Work closely with the ML team, integration team(s) and the cloud administrators to deploy and integrate ML services into a wide range of products
  • Build complex container-based workflows that include multiple data and model components for machine learning applications
  • Designing and implementing CI/CD pipelines with git, Jenkins, and AWS for ML research-based projects
  • Continuously improve latency, concurrency, horizontal scaling, and overall API performance for deployed applications by introducing new tools/technologies crafted for ML
  • Understanding and analyzing the current development and deployment specs for the ML team and proposing scopes of improvement and solutions to improve the same

Share your profile on -careers@xecurify.com

NOTE - Work From the office

Locations - Pune ( Balewadi / Baner)

Company Information